Evolutionary deep learning; genetic algorithms and neural network (Record no. 301203)

MARC details
000 -LEADER
fixed length control field 00430nam a2200157 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20251219164201.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251219b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781617299520
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3 LAN;
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Lanham, Micheal.
245 ## - TITLE STATEMENT
Title Evolutionary deep learning; genetic algorithms and neural network
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. New york
Name of publisher, distributor, etc. Manning publications
Date of publication, distribution, etc. 2023
300 ## - PHYSICAL DESCRIPTION
Extent xxii, 336p.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type PESU Books
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Suppress in OPAC 0
Holdings
Date last seen Total Checkouts Full call number Accession number Copy number Cost, replacement price Price effective from Category Lost status Source of classification or shelving scheme Damaged status Department Withdrawn status bill no. bill date Permanent Location Current Location Shelving location Entry date Vendor Cost, normal purchase price Grants Currency symbol Conversion rate Discount Discount type
19/12/2025   006.3 LAN;1 R PU16526 1 4271.29 08/12/2025 PESU Books   Dewey Decimal Classification   Central Library   KLBH/IN/1027/2025-26 08/12/2025 Central Library Central Library Central Library 19/12/2025 KL Book House 5339.11 AIML 1 20 %
19/12/2025   006.3 LAN;2 R1 PU16527 2 4271.29 08/12/2025 PESU Books   Dewey Decimal Classification   Central Library   KLBH/IN/1027/2025-26 08/12/2025 Central Library Central Library Central Library 19/12/2025 KL Book House 5339.11 AIML 1 20 %

© For any Suggestions or Query, please contact the library staff @ librarian@pes.edu or Phone: +9180 2672 1983/ 2108.